Published in

American Society of Mechanical Engineers, Applied Mechanics Reviews, 6(64), p. 060802

DOI: 10.1115/1.4023110

Links

Tools

Export citation

Search in Google Scholar

Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces

Journal article published in 2011 by Kyoungsoo Park, Glaucio H. Paulino
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One of the fundamental aspects in cohesive zone modeling is the definition of the traction-separation relationship across fracture surfaces, which approximates the nonlinear fracture process. Cohesive traction-separation relationships may be classified as either nonpotential-based models or potential-based models. Potential-based models are of special interest in the present review article. Several potential-based models display limitations, especially for mixed-mode problems, because of the boundary conditions associated with cohesive fracture. In addition, this paper shows that most effective displacement-based models can be formulated under a single framework. These models lead to positive stiffness under certain separation paths, contrary to general cohesive fracture phenomena wherein the increase of separation generally results in the decrease of failure resistance across the fracture surface (i.e., negative stiffness). To this end, the constitutive relationship of mixed-mode cohesive fracture should be selected with great caution.