Published in

Nature Research, Nature, 6395(359), p. 536-539, 1992

DOI: 10.1038/359536a0

Links

Tools

Export citation

Search in Google Scholar

CENP-E is a putative kinetochore motor that accumulates just before mitosis

Journal article published in 1992 by Tim J. Yen, Gang Li, Bruce T. Schaar, Illya Szilak, Don W. Cleveland ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The mechanics of chromosome movement, mitotic spindle assembly and spindle elongation have long been central questions of cell biology. After attachment in prometaphase of a microtubule from one pole, duplicated chromosome pairs travel towards the pole in a rapid but discontinuous motion. This is followed by a slower congression towards the midplate as the chromosome pair orients with each kinetochore attached to the microtubules from the nearest pole. The pairs disjoin at anaphase and translocate to opposite poles and the interpolar distance increases. Here we identify CENP-E as a kinesin-like motor protein (M(r) 312,000) that accumulates in the G2 phase of the cell cycle. CENP-E associates with kinetochores during congression, relocates to the spindle midzone at anaphase, and is quantitatively discarded at the end of the cell division. CENP-E is likely to be one of the motors responsible for mammalian chromosome movement and/or spindle elongation.