Published in

American Physiological Society, Journal of Neurophysiology, 5(95), p. 3171-3190, 2006

DOI: 10.1152/jn.00090.2005

Links

Tools

Export citation

Search in Google Scholar

Form and Function of ON-OFF Amacrine Cells in the Amphibian Retina

Journal article published in 2006 by Robert F. Miller, Nathan P. Staff ORCID, Toby J. Velte
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

on-off amacrine cells were studied with whole cell recording techniques and intracellular staining methods using intact retina-eyecup preparations of the tiger salamander ( Ambystoma tigrinum) and the mudpuppy ( Necturus maculosus). Morphological characterization of these cells included three-dimensional reconstruction methods based on serial optical sections obtained with a confocal microscope. Some cells had their detailed morphology digitized with a computer-assisted tracing system and converted to compartmental models for computer simulations. The dendrites of on-off amacrine cells have spines and numerous varicosities. Physiological recordings confirmed that on-off amacrine cells generate both large- and small-amplitude impulses attributed, respectively, to somatic and dendritic generation sites. Using a multichannel model for impulse generation, computer simulations were carried out to evaluate how impulses are likely to propagate throughout these structures. We conclude that the on-off amacrine cell is organized with multifocal dendritic impulse generating sites and that both dendritic and somatic impulse activity contribute to the functional repertoire of these interneurons: locally generated dendritic impulses can provide regional activation, while somatic impulse activity results in rapid activation of the entire dendritic tree.