Published in

American Chemical Society, Journal of Proteome Research, 11(12), p. 5012-5024, 2013

DOI: 10.1021/pr400685z

Links

Tools

Export citation

Search in Google Scholar

Isotope Labeling-Based Quantitative Proteomics of Developing Seeds of Castor Oil Seed (Ricinus communisL.)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism, seed storage proteins, toxins and allergens. Additionally, we have used an off-line Hydrophilic Interaction Chromatography (HILIC) as a step of peptide fractionation preceding the Reverse Phase nanoLC coupled with a LTQ Orbitrap. We were able to identify a total of 1875 proteins and from these 1748 could be mapped to extant castor gene models, expanding considerably the number proteins so far identified from developing castor seeds. Cluster validation and statistical analysis resulted in 975 protein trend patterns and the relative abundance of 618 proteins. The results presented in this work give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism and catabolism of fatty acid and the pattern of deposition of reserve proteins, toxins and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of reserve proteins that are differentially expressed during seed development.