Published in

Elsevier, Journal of Biomechanics, 4(44), p. 774-779

DOI: 10.1016/j.jbiomech.2010.10.041

Links

Tools

Export citation

Search in Google Scholar

The natural frequency of the foot-surface cushion during the stance phase of running

Journal article published in 2011 by Wangdo Kim, John Tan, Antonio Veloso, Veronica Vleck ORCID, Arkady S. Voloshin
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Researchers have reported on the stiffness of running in holistic terms, i.e. for the structures that are undergoing deformation as a whole rather than in terms of specific locations. This study aimed to estimate both the natural frequency and the viscous damping coefficient of the human foot-surface cushion, during the period between the heel strike and the mid-stance phase of running, using a purposely developed one degree-of-freedom inverted pendulum state space model of the leg. The model, which was validated via a comparison of measured and estimated ground reaction forces, incorporated a novel use of linearized and extended Kalman filter estimators. Investigation of the effect of variation of the natural frequency and/or the damping of the cushioning mechanism during running, using the said model, revealed the natural frequency of running on said foot-surface cushion, during the stance phase, to lie between 5 and 11 Hz. The "extended Kalman filter (EKF)" approach, that was used here for the first time to directly apply measured ground forces, may be widely applicable to the identification process of combined estimation of both unknown physiological state and mechanical characteristics of the environment in an inverse dynamic model.