Published in

Oxford University Press (OUP), Monthly Notices of the Royal Astronomical Society, 1(454), p. 307-322

DOI: 10.1093/mnras/stv1898

Links

Tools

Export citation

Search in Google Scholar

Self-consistent triaxial models

Journal article published in 2015 by Jason L. Sanders ORCID, N. Wyn Evans
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

We present self-consistent triaxial stellar systems that have analytic distribution functions (DFs) expressed in terms of the actions. These provide triaxial density profiles with cores or cusps at the centre. They are the first self-consistent triaxial models with analytic DFs suitable for modelling giant ellipticals and dark haloes. Specifically, we study triaxial models that reproduce the Hernquist profile from Williams & Evans (2015), as well as flattened isochrones of the form proposed by Binney (2014). We explore the kinematics and orbital structure of these models in some detail. The models typically become more radially anisotropic on moving outwards, have velocity ellipsoids aligned in Cartesian coordinates in the centre and aligned in spherical polar coordinates in the outer parts. In projection, the ellipticity of the isophotes and the position angle of the major axis of our models generally changes with radius. So, a natural application is to elliptical galaxies that exhibit isophote twisting. As triaxial Sẗackel models do not show isophote twists, our DFs are the first to generate mass density distributions that do exhibit this phenomenon, typically with a gradient of $≈ 10^∘$/effective radius, which is comparable to the data. Triaxiality is a natural consequence of models that are susceptible to the radial orbit instability. We show how a family of spherical models with anisotropy profiles that transition from isotropic at the centre to radially anisotropic becomes unstable when the outer anisotropy is made sufficiently radial. Models with a larger outer anisotropy can be constructed but are found to be triaxial. We argue that the onset of the radial orbit instability can be identified with the transition point when adiabatic relaxation yields strongly triaxial rather than weakly spherical endpoints. ; Comment: 17 pages, 12 figures, submitted to MNRAS, comments welcome