Published in

Elsevier, Protein Expression and Purification, 1(81), p. 83-88, 2012

DOI: 10.1016/j.pep.2011.09.008

Links

Tools

Export citation

Search in Google Scholar

Heat stability of Proteobacterial PII protein facilitate purification using a single chromatography step

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The P(II) proteins comprise a family of widely distributed signal transduction proteins that integrate the signals of cellular nitrogen, carbon and energy status, and then regulate, by protein-protein interaction, the activity of a variety of target proteins including enzymes, transcriptional regulators and membrane transporters. We have previously shown that the P(II) proteins from Azospirillum brasilense, GlnB and GlnZ, do not alter their migration behavior under native gel electrophoresis following incubated for a few minutes at 95°C. This data suggested that P(II) proteins were either resistant to high temperatures and/or that they could return to their native state after having been unfolded by heat. Here we used (1)H NMR to show that the A. brasilense GlnB is stable up to 70°C. The melting temperature (Tm) of GlnB was determined to be 84°C using the fluorescent dye Sypro-Orange. P(II) proteins from other Proteobacteria also showed a high Tm. We exploited the thermo stability of P(II) by introducing a thermal treatment step in the P(II) purification protocol, this step significantly improved the homogeneity of A. brasilense GlnB and GlnZ, Herbaspirillum seropedicae GlnB and GlnK, and of Escherichia coli GlnK. Only a single chromatography step was necessary to obtain homogeneities higher than 95%. NMR(1) and in vitro uridylylation analysis showed that A. brasilense GlnB purified using the thermal treatment maintained its folding and activity. The purification protocol described here can facilitate the study of P(II) protein family members.