Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Phytochemistry, 3(69), p. 627-636, 2008

DOI: 10.1016/j.phytochem.2007.08.018

Links

Tools

Export citation

Search in Google Scholar

Spring cabbage peroxidases - Potential tool in biocatalysis and bioelectrocatalysis

Journal article published in 2008 by Anna Belcarz, Grazyna Ginalska ORCID, Barbara Kowalewska, Pawel Kulesza
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Two fractions of peroxidase activity, cationic Px-cat and anionic Px-ani, were isolated and partially purified (143.5- and 5.49-fold, respectively) from homogenate of spring cabbage heads. Optimum pH for both fractions is 6.0; however, Px-cat is almost equally active at neutral pH (7.0) while Px-ani reveals high activity in more acidic pHs (with 60% of maximum activity at pH 3.0). Optimal temperature for both fractions was 40 degrees C. Px-ani possessed much higher thermal stability at 40-50 degrees C (60% of remaining activity after 144h of incubation) than Px-cat. The peroxidases remained fully active during 4 weeks of storage at 4 degrees C. Kinetic studies revealed that Px-cat and Px-ani had lower apparent Km values for ABTS (0.0377 and 0.0625mM) and o-dianisidine (0.357 and 0.286mM) than for guaiacol (6.41 and 13.89mM). The best substrate for Px-cat was pyrogallol and for Px-ani-o-dianisidine. Px-cat immobilized on polyanionic PyBA-modified carbon electrode was found to produce linear repetitive signals upon consecutive additions of hydrogen peroxide during at least 1-week period and to work effectively under buffered and non-buffered conditions. These properties were comparable with those of commercially available horseradish peroxidase. Stability of the hybrid bioelectrocatalytic film and low costs of extraction and partial purification of Px-cat make it a highly promising enzyme for practical applications, including construction of bioelectrodes.