Published in

IOP Publishing, Semiconductor Science and Technology, 9(30), p. 094008

DOI: 10.1088/0268-1242/30/9/094008

Links

Tools

Export citation

Search in Google Scholar

Properties of hybrid MOVPE/MBE grown GaAsBi/GaAs based near-infrared emitting quantum well lasers

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A combined growth approach involving both molecular-beam epitaxy and metal-organic vapor phase epitaxy has been developed to fabricate GaAsBi/GaAs-based quantum well (QW) laser structures with a Bi composition up to 8%. Lasing operation has been demonstrated at room temperature at 1.06 μm in laser diodes containing 3QWs that in turn contain approximately 6% Bi. A 5QW device demonstrated lasing at 1.09 μm at 80 K. Using temperature- and pressure-dependent measurements of stimulated emission as well as pure spontaneous emission measurements, we show that the threshold current of the devices is limited by non-radiative defect-related recombination and an inhomogeneous carrier distribution. This is suspected to be due to inhomogeneity of the QW width as well as non-uniform Bi composition in the active region.