Published in

American Chemical Society, Journal of Physical Chemistry C, 24(118), p. 12632-12641, 2014

DOI: 10.1021/jp502092h

Links

Tools

Export citation

Search in Google Scholar

Influence of the Oxygen Substoichiometry and of the Hydrogen Incorporation on the Electronic Band Structure of Amorphous Tungsten Oxide Films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The influence of the oxygen substoichiometry and of the hydrogen incorporation on the electronic structure of amorphous tungsten oxide films was investigated. It was found that both of them cause the appearance of intermediate bands (IBs) within the energy gap; approximately 3 and 1 eV below the edge of the conduction band (CB), respectively. The hydrogen is incorporated into the W–O network bonding either to the oxygen or to the tungsten ions. In the former case, the electronic structure of the material retains the characteristics of amorphous stoichiometric tungsten oxide with, additionally, the two IBs. In the latter case, the electronic structure of tungsten oxide is seriously perturbed because in addition to the IBs the 1s orbitals of the hydrogen also contribute to the formation of the edges of valence and CBs causing the delocalization of electrons. Carriers donated by the incorporated hydrogen ions are excited in the CB, causing plasma oscillations and red shifting photoluminescence.