Dissemin is shutting down on January 1st, 2025

Published in

Wiley, Journal of Microscopy, 3(218), p. 253-262, 2005

DOI: 10.1111/j.1365-2818.2005.01483.x

Links

Tools

Export citation

Search in Google Scholar

Fluorescence resonance Energy transfer (FRET) measurement by gradual acceptor photobleaching

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Fluorescence resonance energy transfer (FRET) is an extremely effective tool to detect molecular interaction at suboptical resolutions. One of the techniques for measuring FRET is acceptor photobleaching: the increase in donor fluorescence after complete acceptor photobleaching is a measure of the FRET efficiency. However, in wide-field microscopy, complete acceptor photobleaching is difficult due to the low excitation intensities. In addition, the method is sensitive to inadvertent donor bleaching, autofluorescence and bleed-through of excitation light. In the method introduced in this paper, donor and acceptor intensities are monitored continuously during acceptor photobleaching. Subsequently, curve fitting is used to determine the FRET efficiency. The method was demonstrated on cameleon (YC2.1), a FRET-based Ca(2+) indicator, and on a CFP-YFP fusion protein expressed in HeLa cells. FRET efficiency of cameleon in the presence of 1 mm Ca(2+) was 31 +/- 3%. In the absence of Ca(2+) a FRET efficiency of 15 +/- 2% was found. A FRET efficiency of 28% was found for the CFP-YFP fusion protein in HeLa cells. Advantages of the method are that it does not require complete acceptor photobleaching, it includes correction for spectral cross-talk, donor photobleaching and autofluorescence, and is relatively simple to use on a normal wide-field microscope.