Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Journal of Molecular Cell Biology, 3(2), p. 118-127, 2010

DOI: 10.1093/jmcb/mjq001

Links

Tools

Export citation

Search in Google Scholar

Progastriscin: Structure, Function, and Its Role in Tumor Progression

Journal article published in 2010 by Md Imtaiyaz Hassan, M. I. Hassan, M.-D. I. Hassan, Aman Toor, Faizan Ahmad ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Progastricsin (PGC) is a major seminal plasma protein having aspartyl proteinases-like activity and showing close sequence similarity to pepsins. PGC is also present as zymogen in gastric mucosa. In this article, we have reviewed all important features of PGC. Furthermore, we have compared all features of PGC with those of different aspartyl proteinases. The complete amino acid sequence of PGC reveals that it is composed of 374 residues (gastricsin moiety of 331 residues and the activation segment of 43 residues). The gene of human PGC is located at single locus on chromosome 6, whereas the human pepsinogen genetic locus is polymorphic and codes for at least three distinct polypeptide sequences on chromosome 11. The major useful function of PGC includes production of pro-antimicrobial substance in seminal plasma. The crystal structure of human PGC is known, which shows that it is quite similar to that of porcine pepsinogen. The tertiary structure of PGC is comprised of commonly bilobal structure with a large active-site cleft between the lobes. Two aspartate residues in the center of the cleft, namely Asp32 and Asp215, function as catalytic residues. The sequence and structural features of PGC indicate that it is diverged from its pepsinogen ancestor in the early phase of the evolution of gastric aspartyl proteinases. Our detailed review of PGC structure, function and activation mechanism will also be of interest to cancer biologists as well as gastroenterologists.