Published in

Elsevier, Talanta, 3(78), p. 711-716

DOI: 10.1016/j.talanta.2008.12.031

Links

Tools

Export citation

Search in Google Scholar

Quartz crystal microbalance sensor array for the detection of volatile organic compounds

Journal article published in 2009 by Xiuming Xu, Huaiwen Cang, Changzhi Li, Zongbao K. Zhao ORCID, Haiyang Li
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A sensor array system consisting of five quartz crystal microbalance (QCM) sensors (four for measuring and one for reference) and an artificial neural network (ANN) method is presented for on-line detection of volatile organic compounds. Three ionic liquids, 1-butyl-3-methylimidazolium chloride (C(4)mimCl), 1-butyl-3-methylimidazolium hexafluorophosphate (C(4)mimPF(6)), 1-dedocyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (C(4)mimNTf(2)), and silicone oil II, which is widely used as gas chromatographic stationary phase, have been selected as sensitive coatings on the quartz surface allowing the sensor array effective to identify chemical vapors, such as toluene, ethanol, acetone and dichloromethane. The success rate for the qualitative recognition reached 100%. Quantitative analysis has also been investigated, within the concentration range of 0.6-6.1 mg/L for toluene, 0.9-7.5 mg/L for ethanol, 2.8-117 mg/L for dichloromethane, and 0.7-38 mg/L for acetone, with a prediction error lower than 8%.