Dissemin is shutting down on January 1st, 2025

Published in

American Society for Pharmacology and Experimental Therapeutics (ASPET), The Journal of Pharmacology and Experimental Therapeutics, 3(306), p. 941-947, 2003

DOI: 10.1124/jpet.103.052183

Links

Tools

Export citation

Search in Google Scholar

Rat Hepatic CYP2E1 Is Induced by Very Low Nicotine Doses: An Investigation of Induction, Time Course, Dose Response, and Mechanism

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

CYP2E1 is an ethanol- and drug-metabolizing enzyme that can also activate procarcinogens and hepatotoxicants and generate reactive oxygen species; it has been implicated in the pathogenesis of liver diseases and cancer. Cigarette smoke increases CYP2E1 activity in rodents and in humans and we have shown that nicotine (0.1-1.0 mg/kg s.c. x 7 days) increases CYP2E1 protein and activity in the rat liver. In the current study, we have shown that the induction peaks at 4 h postnicotine (1 mg/kg s.c. x 7 days) treatment and recovers within 24 h. No induction was observed after a single injection, and 18 days of treatment did not increase the levels beyond that found at 7 days. We found that CYP2E1 is induced by very low doses of chronic (x 7 days) nicotine with an ED50 value of 0.01 mg/kg s.c.; 0.01 mg/kg in a rat model results in peak cotinine levels (nicotine metabolite) similar to those found in people exposed to environmental tobacco smoke (passive smokers; 2-7 ng/ml). Previously, we have shown no change in CYP2E1 mRNA, and our current mechanistic study indicates that nicotine does not regulate CYP2E1 expression by protein stabilization. We postulated that a nicotine metabolite could be causing the induction but found that cotinine (1 mg/kg x 7 days) did not increase CYP2E1. Our findings indicate that nicotine increases CYP2E1 at very low doses and may enhance CYP2E1-related toxicity in smokers, passive smokers, and people treated with nicotine (e.g., smokers, patients with Alzheimer's disease, ulcerative colitis or Parkinson's disease).