Published in

Springer (part of Springer Nature), Analytical and Bioanalytical Chemistry, 6(390), p. 1447-1453

DOI: 10.1007/s00216-007-1759-0

Links

Tools

Export citation

Search in Google Scholar

N-K electron energy-loss near-edge structures for TiN/VN layers: An ab initio and experimental study

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We study N-K-edge electron energy-loss near-edge structures for well-defined TiN/VN bilayers grown on a MgO(100) substrate by both calculations and experiments. The structural relaxations and the electronic structure of TiN/VN multilayers are calculated using the Vienna Ab Initio Simulation Package computer code, which uses density functional theory to describe the electronic interaction. The effects of the core hole created in the excitation process are included in the calculations. For VN, off-stoichiometric effects due to nitrogen vacancies are modelled. The partial density of states (PDOS) for the N-K edge of atoms in the vicinity of the TiN/MgO interface revealed that two new peaks appear between 7 and 9 eV instead of a broad shoulder typical for the bulk. For the VN/TiN interface, the PDOS is modified only slightly, owing to similar bonding on both sides of the interface, and is thus very similar to the respective bulk spectra. An experimental spectrum taken at the VN/TiN interface is, however, well described by an average of the simulated spectra for VN and TiN bulk (interface). Such a finding is characteristic of an intermixed interface.