Published in

Elsevier, Developmental Biology, 2(225), p. 294-303, 2000

DOI: 10.1006/dbio.2000.9823

Links

Tools

Export citation

Search in Google Scholar

X Inactivation in the Mouse Embryo Deficient for Dnmt1: Distinct Effect of Hypomethylation on Imprinted and Random X Inactivation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

It has been suggested that DNA methylation plays a crucial role in genomic imprinting and X inactivation. Using DNA methyltransferase 1 (Dnmt1)-deficient mouse embryos carrying X-linked lacZ transgenes, we studied the effects of genomic demethylation on X inactivation. Based on the expression pattern of lacZ, the imprinted X inactivation in the visceral endoderm, a derivative of the extraembryonic lineage, was unaffected in Dnmt1 mutant embryos at the time other imprinted genes showed aberrant expression. Random X inactivation in the embryonic lineage of Dnmt1 mutant embryos, however, was unstable as a result of hypomethylation, causing reactivation of, at least, one lacZ transgene that had initially been repressed. Our results suggest that maintenance of imprinted X inactivation in the extraembryonic lineage can tolerate extensive demethylation while normal levels of methylation are required for stable maintenance of X inactivation in the embryonic lineage.