Published in

Portland Press, Clinical Science, 4(99), p. 315-320, 2000

DOI: 10.1042/cs0990315

Portland Press, Clinical Science, 4(99), p. 315, 2000

DOI: 10.1042/cs20000127

Links

Tools

Export citation

Search in Google Scholar

S-Adenosylmethionine prevents hepatic tocopherol depletion in carbon tetrachloride-injured rats

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In various experimental models, S-adenosylmethionine (SAMe) has been shown to reduce liver injury by preventing depletion of glutathione, one of the antioxidant systems that plays a critical role in defence against oxidative stress. On the other hand, alpha-tocopherol may be decreased in liver diseases, and treatment with this vitamin reduces liver injury in CCl(4)-treated rats. Since there is a close relationship among the different antioxidant systems (mainly glutathione, alpha-tocopherol and ascorbic acid), we have assessed whether, as well as restoring hepatic glutathione content, SAMe has any effect on liver alpha-tocopherol and ascorbic acid levels in CCl(4)-injured rats. Four groups of seven male Wistar rats treated for 9 weeks were studied: rats induced to cirrhosis with CCl(4), rats induced to cirrhosis plus SAMe administration (10 mg x kg(-1) x day(-1)) and their respective controls. Liver samples were obtained for measuring levels of glutathione, alpha-tocopherol, ascorbic acid and thiobarbituric acid-reactive substances (TBARS), and hydroxyproline concentration as an index of collagen content. The hydroxyproline content was higher in CCl(4)-injured rats than in the control group (4.4+/-1.8 and 1.1+/-0.3 micromol/g respectively; P<0.05). In CCl(4)-injured rats, SAMe administration decreased collagen content (2.7+/-1.0 microl/g; P<0.05) and TBARS, and corrected glutathione depletion. alpha-Tocopherol was significantly lower in CCl(4)-injured rats than in controls (17.3+/-4.9 and 23.0+/-4.0 micromol/g respectively; P<0.05). By contrast, alpha-tocopherol levels were similar (23.8+/-5.1 micromol/g) in CCl(4)-injured rats receiving SAMe and in controls. In CCl(4)-injured rats, liver ascorbic acid was decreased in comparison with controls (4.9+/-1.8 and 8.2+/-1.0 micromol/g respectively; P<0.05), levels which were not replenished by SAMe (4.6+/-0.4 micromol/g). In conclusion, SAMe not only decreases fibrosis and protects against hepatic glutathione depletion, but has a further antioxidant effect of preventing alpha-tocopherol depletion in CCl(4)-injured rats.