Published in

American Physical Society, Physical review B, 24(86)

DOI: 10.1103/physrevb.86.245127

Links

Tools

Export citation

Search in Google Scholar

Benchmark ofGWmethods for azabenzenes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Many-body perturbation theory in the GW approximation is a useful method for describing electronic properties associated with charged excitations. A hierarchy of GW methods exists, starting from non-self-consistent G0W0, through partial self-consistency in the eigenvalues and in the Green's function (scGW0), to fully self-consistent GW (scGW). Here, we assess the performance of these methods for benzene, pyridine, and the diazines. The quasiparticle spectra are compared to photoemission spectroscopy (PES) experiments with respect to all measured particle removal energies and the ordering of the frontier orbitals. We find that the accuracy of the calculated spectra does not match the expectations based on their level of self-consistency. In particular, for certain starting points G0W0 and scGW0 provide spectra in better agreement with the PES than scGW.