Dissemin is shutting down on January 1st, 2025

Published in

American Chemical Society, ACS Applied Materials and Interfaces, 10(2), p. 2892-2897, 2010

DOI: 10.1021/am100568c

Links

Tools

Export citation

Search in Google Scholar

Template-Free Synthesis of Organically Modified Silica Mesoporous Thin Films for TNT Sensing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In this paper, we present a facile, template-free sol-gel method to produce fluorescent and highly mesoporous organically modified silica (ORMOSIL) thin films for vapor phase sensing of TNT. An alkyltrifunctional, methyltrimethoxysilane MTMS precursor was used to impart hydrophobic behavior to gel network in order to form the spring back effect. In this way, porous films (up to 74% porosity) are obtained at ambient conditions. Fluorescent molecules are physically encapsulated in the ORMOSIL network during gelation. Fluorescence of the films was found to be stable even after 3 months, proving the successful fixing of the dye into the ORMOSIL network. The functional ORMOSIL thin films exhibited high fluorescence quenching upon exposition to TNT and DNT vapor. Fluorescence quenching responses of the films are thickness-dependent and higher fluorescence quenching efficiency was observed for the thinnest film (8.6% in 10 s). The prepared mesoporous ORMOSIL thin films have great potential in new sensor and catalysis applications.