Published in

American Chemical Society, Langmuir, 8(24), p. 3867-3873, 2008

DOI: 10.1021/la7031863

Links

Tools

Export citation

Search in Google Scholar

Markedly controllable adhesion of superhydrophobic spongelike nanostructure TiO2 films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple electrochemical and self-assembly method was adopted for the fabrication of superhydrophobic spongelike nanostructured TiO2 surfaces with markedly controllable adhesion. Water adhesion ranging from ultralow (5.0 microN) to very high (76.6 microN) can be tuned through adjusting the nitro cellulose dosage concentrations. The detailed experiments and analyses have indicated that the significant increase of adhesion by introducing nitrocellulose is ascribed to the combination of hydrogen bonding between the nitro groups and the hydroxyl groups at the solid/liquid interfaces and the disruption of the densely packed hydrophobic 1H,1H,2H,2H-perfluorooctyltriethoxysilane (PTES) molecule. A mechanism has been proposed to explain the formation of superhydrophobic TiO2 films with distinct adhesion.