American Institute of Physics, Physics of Plasmas, 2(19), p. 022708, 2012
DOI: 10.1063/1.3685607
Full text: Download
An experimental investigation into the interaction of a supersonic, radiatively cooled plasma jet with argon gas is presented. The jet is formed by ablation of an aluminum foil driven by a 1.4 MA, 250 ns current pulse in a radial foil Z-pinch configuration. The outflow consists of a supersonic (Mach number ∼3–5), dense (ion density ni ∼ 1018 cm−3), highly collimated (half-opening angle ∼2°−5°) jet surrounded by a lower density halo plasma moving with the same axial velocity as the jet. The addition of argon above the foil leads to the formation of a shock driven by the ablation of halo plasma, together with a bow-shock driven by the dense jet. Experimental data with and without the presence of argon are compared with three-dimensional, magneto-hydrodynamic simulations using the GORGON code.