Dissemin is shutting down on January 1st, 2025

Published in

Taylor and Francis Group, International Journal of Geographical Information Science, 2(29), p. 194-216

DOI: 10.1080/13658816.2014.954580

Links

Tools

Export citation

Search in Google Scholar

Cardinal directions: a comparison of direction relation matrix and objects interaction matrix

Journal article published in 2014 by Sanjiang Li ORCID, Weiming Liu
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

How to express and reason with cardinal directions between extended objects such as lines and regions is an important problem in qualitative spatial reasoning (QSR), a common subfield of geographical information science and Artificial Intelligence (AI). The direction relation matrix (DRM) model, proposed by Goyal and Egenhofer in 1997, is one very expressive relation model for this purpose. Unlike many other relation models in QSR, the set-theoretic converse of a DRM relation is not necessarily representable in DRM. Schneider et al. regard this as a serious shortcoming and propose, in their work published in ACM TODS (2012), the objects interaction matrix (OIM) model for modelling cardinal directions between complex regions. OIM is also a tiling-based model that consists of two phases: the tiling phase and the interpretation phase. Although it was claimed that OIM is a novel concept, we show that it is not so different from DRM if we represent the cardinal direction of two regions a and b by both the DRM of a to b and that of b to a. Under this natural assumption, we give methods for computing DRMs from OIMs and vice versa, and show that OIM is almost the same as DRM in the tiling phase, and becomes less precise after interpretation. Furthermore, exploiting the similarity between the two models, we prove that the consistency of a complete basic OIM network can be decided in cubic time. This answers an open problem raised by Schneider et al. regarding efficient algorithms for reasoning with OIM.