Published in

American Institute of Physics, The Journal of Chemical Physics, 16(130), p. 165102

DOI: 10.1063/1.3118681

Links

Tools

Export citation

Search in Google Scholar

Formation of lamellar structures from spherical particles

Journal article published in 2009 by Zhidong Li, Jianzhong Wu ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

We report disorder to lamellar transition in a system of spherically symmetric particles where the interparticle potential consists of a short-ranged attraction and a longer-ranged repulsion. The system provides a simplified model for aqueous dispersions of colloidal particles and globular proteins that may exhibit stable/metastable clusters or microscopic phases. By using a non-mean-field density functional theory, we predict that under appropriate conditions, a lamellar phase with alternating condensed and dilute layers of particles is thermodynamically more stable than a uniform disordered phase at the same temperature and molecular number density. Formation of the lamellar structure may prohibit the macroscopic fluid-fluid phase transition. At a given condition, the width of the condensed lamellar layers increases with the overall particle density but the trend is opposite for the dilute lamellar layers. A minimal lamellar periodicity is obtained when the condensed and dilute layers have approximately the same thickness.