Published in

American Chemical Society, Journal of the American Chemical Society, 12(126), p. 3748-3754, 2004

DOI: 10.1021/ja039025z

Links

Tools

Export citation

Search in Google Scholar

Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Genetic loss of function analysis is a powerful method for the study of protein function. However, some cell biological questions are difficult to address using traditional genetic strategies often due to the lack of appropriate genetic model systems. Here, we present a general strategy for the design and syntheses of molecules capable of inducing the degradation of selected proteins in vivo via the ubiquitin-proteasome pathway. Western blot and fluorometric analyses indicated the loss of two different targets: green fluorescent protein (GFP) fused with FK506 binding protein (FKBP12) and GFP fused with the androgen receptor (AR), after treatment with PROteolysis TArgeting Chimeric moleculeS (PROTACS) incorporating a FKBP12 ligand and dihydrotestosterone, respectively. These are the first in vivo examples of direct small molecule-induced recruitment of target proteins to the proteasome for degradation upon addition to cultured cells. Moreover, PROTAC-mediated protein degradation offers a general strategy to create "chemical knockouts," thus opening new possibilities for the control of protein function.