Published in

Springer Verlag, Science China Chemistry, 8(56), p. 1029-1039

DOI: 10.1007/s11426-013-4891-z

Links

Tools

Export citation

Search in Google Scholar

Layer by layer surface engineering of poly (lactide-co-glycolide) nanoparticles: A versatile tool for nanoparticle engineering for targeted drug delivery

Journal article published in 2013 by Gabriela Romero ORCID, Richard A. Murray, Yuan Qiu, David Sanz, Sergio E. Moya
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recent work regarding the Layer by Layer (LbL) engineering of poly(lactide-co-glycolide) nanoparticles (PLGA NPs) is reviewed here. The LbL engineering of PLGA NPs is applied as a means of generating advanced drug delivery devices with tailored recognition, protection, cargo and release properties. LbL in combination with covalent chemistry is used to attach PEG and folic acid to control cell uptake and direct it towards cancer cells. LbL coatings composed of chitosan and alginate show low protein interactions and can be used as an alternative to Pegylation. The assembly on top of LbL coatings of lipid layers composed of variable percentages of 1,2-dioleoyl-sn-glycero-3-choline (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) increases NP uptake and directs the NPs towards the endoplasmic reticulum. The antibody anti-TNF-α is encapsulated forming a complex with alginate that is assembled LbL on top of PLGA NPs. The antibody is released in cell culture following first order kinetics. The release kinetics of encapsulated molecules inside PLGA NPs are studied when the PLGA NPs are coated via LbL with different polyelectrolytes. The intracellular release of encapsulated Doxorubicin is studied in the HepG2 cell line by means of Fluorescence Lifetime Imaging.