The University of Chicago Press, The American Naturalist, 5(182), p. 611-620
DOI: 10.1086/673300
Full text: Download
Abstract Variation in how individuals invest in acquiring information (sampling) and in insuring themselves against potential negative consequences of uncertainty (e.g., by storing energy reserves) has been suggested to underlie consistent individual differences in suites of behavioral traits. However, the key drivers of individual differences in information use remain poorly understood. We use dynamic programming to explore how existing variation in metabolic rates (MRs) affects the use of sampling and insurance under starvation risk. Our analysis reveals nonlinear effects of MRs on diurnal patterns of sampling and insurance. Individuals with low MRs accrue reserves quickly, because they invest in sampling and are able to exploit profitable options when they arise. Individuals with intermediate MRs initially lose reserves, because sampling, while optimal, is relatively expensive; however, they later build reserves due to efficient exploitation of alternative foraging options. Sampling rarely pays for individuals with the highest MRs, which show relatively constant levels of energy reserves throughout the foraging period. Thus, individual variation in MRs on the scale observed in natural populations can lead to important differences in investment in sampling and insurance and may underpin consistent individual differences in suites of other behavioral traits, including individual differences in behavioral responsiveness.