Published in

American Association of Immunologists, The Journal of Immunology, 9(183), p. 5909-5916, 2009

DOI: 10.4049/jimmunol.0900441

Links

Tools

Export citation

Search in Google Scholar

The Adaptor Protein p62/SQSTM1 Targets Invading Bacteria to the Autophagy Pathway

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Autophagy, a cellular degradative pathway, plays a key role in protecting the cytosol from bacterial colonization, but the mechanisms of bacterial recognition by this pathway are unclear. Autophagy is also known to degrade cargo tagged by ubiquitinated proteins, including aggregates of misfolded proteins, and peroxisomes. Autophagy of ubiquitinated cargo requires p62 (also known as SQSTM1), an adaptor protein with multiple protein-protein interaction domains, including a ubiquitin-associated (UBA) domain for ubiquitinated cargo binding and an LC3 interaction region (LIR) for binding the autophagy protein LC3. Previous studies demonstrated that the intracellular bacterial pathogen Salmonella typhimurium is targeted by autophagy during infection of host cells. Here we show that p62 is recruited to S. typhimurium targeted by autophagy, and that the recruitment of p62 is associated with ubiquitinated proteins localized to the bacteria. Expression of p62 is required for efficient autophagy of bacteria, as well as restriction of their intracellular replication. Our studies demonstrate that the surveillance of misfolded proteins and bacteria occurs via a conserved pathway, and they reveal a novel function for p62 in innate immunity.