Published in

Springer, Biological Cybernetics, 3(101), p. 227-240, 2009

DOI: 10.1007/s00422-009-0332-7

Links

Tools

Export citation

Search in Google Scholar

Spike-timing-dependent plasticity leads to gamma band responses in a neural network

Journal article published in 2009 by Ingo Fründ, Frank W. Ohl, Christoph S. Herrmann ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Early gamma band responses of the human electroencephalogram have been identified as an early interface linking top-down and bottom-up processing. This was based on findings that observed strong sensitivity of this signal to stimulus size and at the same time, to processes of attention and memory. Here, we simulate these findings in a simple random network of biologically plausible spiking neurons. During a learning phase, different stimuli were presented to the network and the synaptic connections were modified according to a spike-timing-dependent plasticity learning rule. In a subsequent test phase, we stimulated the network with (i) patterns of different sizes to simulate bottom-up effects and (ii) with patterns that were or were not presented during the learning phase. The network displayed qualitatively similar behavior as early gamma band responses measured from the scalp of human subjects: there was a general increase in response strength with increasing stimulus size and stronger responses for learned stimuli. We demonstrated that within one neural architecture early gamma band responses can be modulated both by bottom-up factors and by basal learning mechanisms mediated via spike-timing-dependent plasticity.