Published in

Oxford University Press, Stem Cells, 2(27), p. 408-419, 2009

DOI: 10.1634/stemcells.2008-0226

Links

Tools

Export citation

Search in Google Scholar

Endogenous Hepatocyte Growth Factor Is a Niche Signal for Subventricular Zone Neural Stem Cell Amplification and Self-Renewal

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Neural stem cells persist in the adult mammalian brain, within the subventricular zone (SVZ). The endogenous mechanisms underpinning SVZ neural stem cell proliferation, self-renewal, and differentiation are not fully elucidated. In the present report, we describe a growth-stimulatory activity of liver explant-conditioned media on SVZ cell cultures and identify hepatocyte growth factor (HGF) as a major player in this effect. HGF exhibited a mitogenic activity on SVZ cell cultures in a mitogen-activated protein kinase (MAPK) (ERK1/2)-dependent manner as U0126, a specific MAPK inhibitor, blocked it. Combining a functional neurosphere forming assay with immunostaining for c-Met, along with markers of SVZ cells subtypes, demonstrated that HGF promotes the expansion of neural stem-like cells that form neurospheres and self-renew. Immunostaining, HGF enzyme-linked immunosorbent assay and Madin-Darby canine kidney cell scattering assay indicated that SVZ cell cultures produce and release HGF. SVZ cell-conditioned media induced proliferation on SVZ cell cultures, which was blocked by HGF-neutralizing antibodies, hence implying that endogenously produced HGF accounts for a major part in SVZ mitogenic activity. Brain sections immunostaining revealed that HGF is produced by nestin-expressing cells and c-Met is expressed within the SVZ by immature cells. HGF intracerebroventricular injection promoted SVZ cell proliferation and increased the ability of these cells exposed in vivo to HGF to form neurospheres in vitro, whereas intracerebroventricular injection of HGF-neutralizing antibodies decreased SVZ cell proliferation. The present study unravels a major role, both in vitro and in vivo, for endogenous HGF in SVZ neural stem cell growth and self-renewal.