Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Journal of Cell Science, 2012

DOI: 10.1242/jcs.114033

Links

Tools

Export citation

Search in Google Scholar

LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Carefully orchestrated intercellular communication is an essential prerequisite for the development of multicellular organisms. In recent years, tunneling nanotubes (TNT) have emerged as a novel and widespread mechanism of cell-cell communication. However, the molecular basis of their formation is still poorly understood. In the present study we report that the transmembrane MHC class III protein LST1 induces the formation of functional nanotubes and is required for endogenous nanotube generation. Mechanistically, we found LST1 to induce nanotube formation by recruiting the small GTPase RalA to the plasma membrane and promoting its interaction with the exocyst complex. Furthermore, we determined LST1 to recruit the actin-crosslinking protein filamin to the plasma membrane and to interact with M-Sec, myosin and myoferlin. These results allow us to suggest a molecular model for nanotube generation. In this proposal LST1 functions as a membrane scaffold mediating the assembly of a multimolecular complex, which controls the formation of functional nanotubes.