Published in

American Chemical Society, Journal of Agricultural and Food Chemistry, 8(49), p. 3651-3655, 2001

DOI: 10.1021/jf010192x

Links

Tools

Export citation

Search in Google Scholar

Effect of Processing and Storage on the Antioxidant Ellagic Acid Derivatives and Flavonoids of Red Raspberry ( Rubus idaeus ) Jams

Journal article published in 2001 by Federico Ferreres, Pilar Zafrilla, Francisco A. Tomás Barberán ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

From red raspberries, ellagic acid, its 4-arabinoside, its 4' (4' '-acetyl) arabinoside, and its 4' (4' '-acetyl)xyloside, as well as quercetin and kaempferol 3-glucosides, were identified. In addition, two unidentified ellagic acid derivatives were detected. The free radical scavenging activity of the ellagic acid derivatives was evaluated by using the DPPH method and compared to that of Trolox. All of the isolated compounds showed antioxidant activity. The effect of processing to obtain jams on raspberry phenolics was evaluated. The flavonol content decreased slightly with processing and more markedly during storage of the jams. The ellagic acid derivatives, with the exception of ellagic acid itself, remained quite stable with processing and during 6 months of jam storage. The content of free ellagic acid increased 3-fold during the storage period. The initial content (10 mg/kg of fresh weight of raspberries) increased 2-fold with processing, and it continued increasing up to 35 mg/kg after 1 month of storage of the jam. Then a slight decrease was observed until 6 months of storage had elapsed. The increase observed in ellagic acid could be explained by a release of ellagic acid from ellagitannins with the thermal treatment.