Published in

Elsevier, Agricultural Systems, (142), p. 99-111, 2016

DOI: 10.1016/j.agsy.2015.11.010

Links

Tools

Export citation

Search in Google Scholar

Carbon footprint of heliciculture: A case study from an Italian experimental farm

Journal article published in 2016 by Annachiara Forte, Amalia Zucaro, Gionata De Vico ORCID, Angelo Fierro
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Heliciculture for food production has huge potential and new opportunities for rural development and young entrepreneurs in Italy. No studies have yet been performed on the environmental performance of snail rearing which also might be a beneficial tool for producers. The aim of the present paper is to evaluate the impact of snail meat by a cradle-to-farm gate life cycle assessment centred on the carbon footprint (CF).The study considered greenhouse gas (GHG) emissions linked to cultivation stages (indoor breeding, outdoor fattening, cleaning out and packaging) of Helix aspersa maxima meat production in a semi-intensive rearing system in Southern Italy. The shell potential for CO2 sequestration was also taken into account. Snail CF amounted to 0.7kg CO2 eq per kg fresh edible meat, with the highest share (about 60%) from the supplementary feeding production. Due to the combined effect of relevant amount input and restrained lifetime of HDPE mesh applied in the open field, the impact of breeding enclosures appeared considerable (about 29%). Greenhouse gas emissions linked to fodder cultivation and to the cleaning-out phase appeared restrained (nearly 4% and 5%, respectively), whilst the share of reproduction system, irrigation and packaging was negligible (<1%).The environmental load of supplementary feeding resulted to mainly ascribable (about 74%) to maize and field bean grain cultivation (for feed mixture). It was followed by grain transport (about 17%) and processing (about 4%) to feed mill and further transport of manufactured feed components (maize-field bean-limestone) to the snail farm (about 5%). The CF score might be reduced by 18%, including potential long term CO2 sequestration in shells. As compared to other conventional macro-livestock meat sources, snail meat showed reduced GHG emissions.