Published in

American Chemical Society, Journal of the American Chemical Society, 38(130), p. 12552-12553, 2008

DOI: 10.1021/ja802105z

Links

Tools

Export citation

Search in Google Scholar

Ethylene Decomposition at Undercoordinated Sites on Cu(410)

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We demonstrate the selective, low-temperature chemistry of ethylene on the strongly undercoordinated sites of Cu(410) by investigating its adsorption by high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). After dosing ethylene at approximately 110 K, apart from the expected pi-bonded species adsorbed on terraces, di-sigma-bonded ethylene and carbon are formed at the step edges. The latter product results from the complete dehydrogenation of ethylene and blocks sites for further dissociation and/or di-sigma-adsorption. However, these processes can be restored merely by heating the sample to 900 K, by causing the carbon to diffuse into the bulk. The presented results support the relevance of copper-based catalysts for the steam reforming process.