Published in

International Union of Crystallography, Journal of Synchrotron Radiation, 1(23), p. 353-368, 2016

DOI: 10.1107/s160057751501783x

Links

Tools

Export citation

Search in Google Scholar

The Time-resolved and Extreme-conditions XAS (TEXAS) facility at the European Synchrotron Radiation Facility: the energy-dispersive X-ray absorption spectroscopy beamline ID24

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The European Synchrotron Radiation Facility has recently made available to the user community a facility totally dedicated to Time-resolved and Extreme-conditions X-ray Absorption Spectroscopy – TEXAS. Based on an upgrade of the former energy-dispersive XAS beamline ID24, it provides a unique experimental tool combining unprecedented brilliance (up to 1014 photons s−1on a 4 µm × 4 µm FWHM spot) and detection speed for a full EXAFS spectrum (100 ps per spectrum). The science mission includes studies of processes down to the nanosecond timescale, and investigations of matter at extreme pressure (500 GPa), temperature (10000 K) and magnetic field (30 T). The core activities of the beamline are centered on new experiments dedicated to the investigation of extreme states of matter that can be maintained only for very short periods of time. Here the infrastructure, optical scheme, detection systems and sample environments used to enable the mission-critical performance are described, and examples of first results on the investigation of the electronic and local structure in melts at pressure and temperature conditions relevant to the Earth's interior and in laser-shocked matter are given.