Published in

MyJove Corporation, Journal of Visualized Experiments, 92, 2014

DOI: 10.3791/52163-v

MyJove Corporation, Journal of Visualized Experiments, 92, 2014

DOI: 10.3791/52163

Links

Tools

Export citation

Search in Google Scholar

Mouse Kidney Transplantation: Models of Allograft Rejection

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Rejection of the transplanted kidney in humans is still a major cause of morbidity and mortality. The mouse model of renal transplantation closely replicates both the technical and pathological processes that occur in human renal transplantation. Although mouse models of allogeneic rejection in organs other than the kidney exist, and are more technically feasible, there is evidence that different organs elicit disparate rejection modes and dynamics, for instance the time course of rejection in cardiac and renal allograft differs significantly in certain strain combinations. This model is an attractive tool for many reasons despite its technical challenges. As inbred mouse strain haplotypes are well characterized it is possible to choose donor and recipient combinations to model acute allograft rejection by transplanting across MHC class I and II loci. Conversely by transplanting between strains with similar haplotypes a chronic process can be elicited were the allograft kidney develops interstitial fibrosis and tubular atrophy. We have modified the surgical technique to reduce operating time and improve ease of surgery, however a learning curve still needs to be overcome in order to faithfully replicate the model. This study will provide key points in the surgical procedure and aid the process of establishing this technique.