Published in

Thieme Gruppe, Seminars in Liver Disease, 03(35), p. 250-261

DOI: 10.1055/s-0035-1562945

Links

Tools

Export citation

Search in Google Scholar

Fatty Acid and Glucose Sensors in Hepatic Lipid Metabolism: Implications in NAFLD

Journal article published in 2015 by Michael Allison, Julian L. Griffin, Michele Vacca ORCID, Antonio Vidal-Puig ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The term nonalcoholic fatty liver disease (NAFLD) covers a pathologic spectrum from lipid accumulation alone (simple steatosis) to steatosis with associated inflammation and fibrosis (nonalcoholic steatohepatitis [NASH]). Nonalcoholic steatohepatitis can progress to cirrhosis and potentially to hepatocellular carcinoma. Although a genetic predisposition has been highlighted, NAFLD is strongly associated with an unhealthy lifestyle and hypercaloric diet in the context of obesity and metabolic disease. The dysregulation of specific pathways (insulin signaling, mitochondrial function, fatty acid, and lipoprotein metabolism) have been linked to steatosis, but elucidating the molecular events determining evolution of the disease still requires further research before it can be translated into specific personalized interventional strategies. In this review, the authors focus on the early events of the pathophysiology of NASH, dissecting the metabolic and nutritional pathways involving fatty acids and glucose sensors that can modulate lipid accumulation in the liver, but also condition the progression to cirrhosis and hepatocellular carcinoma.