Published in

Springer Nature [academic journals on nature.com], Molecular Psychiatry, 11(16), p. 1130-1138, 2010

DOI: 10.1038/mp.2010.123

Links

Tools

Export citation

Search in Google Scholar

Genome-wide association with MRI atrophy measures as a quantitative trait locus for Alzheimer's disease

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with considerable evidence suggesting an initiation of disease in the entorhinal cortex and hippocampus and spreading thereafter to the rest of the brain. In this study, we combine genetics and imaging data obtained from the Alzheimer's Disease Neuroimaging Initiative and the AddNeuroMed study. To identify genetic susceptibility loci for AD, we conducted a genome-wide study of atrophy in regions associated with neurodegeneration in this condition. We identified one single-nucleotide polymorphism (SNP) with a disease-specific effect associated with entorhinal cortical volume in an intron of the ZNF292 gene (rs1925690; P-value=2.6 × 10(-8); corrected P-value for equivalent number of independent quantitative traits=7.7 × 10(-8)) and an intergenic SNP, flanking the ARPP-21 gene, with an overall effect on entorhinal cortical thickness (rs11129640; P-value=5.6 × 10(-8); corrected P-value=1.7 × 10(-7)). Gene-wide scoring also highlighted PICALM as the most significant gene associated with entorhinal cortical thickness (P-value=6.7 × 10(-6)).