Published in

Wiley, Advanced Energy Materials, 17(5), p. 1500631, 2015

DOI: 10.1002/aenm.201500631

Links

Tools

Export citation

Search in Google Scholar

A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new metal-oxide-based interconnecting layer (ICL) structure of all-solution processed metal oxide/dipole layer/metal oxide for efficient tandem organic solar cell (OSC) is demonstrated. The dipole layer modifies the work function (WF) of molybdenum oxide (MoO x) to eliminate preexisted counter diode between MoO x and TiO2. Three different amino functionalized water/alcohol soluble conjugated polymers (WSCPs) are studied to show that the WF tuning of MoO x is controllable. Importantly, the results show that S-shape current density versus voltage (J–V) characteristics form when operation temperature decreases. This implies that thermionic emission within the dipole layer plays critical role for helping recombination of electrons and holes. Meanwhile, the insignificant homotandem open-circuit voltage (V oc) loss dependence on dipole layer thickness shows that the quantum tunneling effect is weak for efficient electron and hole recombination. Based on this ICL, poly(3-hexylthiophene) (P3HT)-based homotandem OSC with 1.20 V V oc and 3.29% power conversion efficiency (PCE) is achieved. Furthermore, high efficiency poly(4,8-bis(5-(2-ethylhexyl)-thiophene-2-yl)-benzo[1,2-b54,5-b9]dithiophene-alt alkylcarbonylthieno[3,4-b]thiophene) (PBDTTT-C-T)-based homotandem OSC with 1.54 V V oc and 8.11% PCE is achieved, with almost 15.53% enhancement compared to its single cell. This metal oxide/dipole layer/metal oxide ICL provides a new strategy to develop other qualified ICL with different hole transporting layer and electron transporting layer in tandem OSCs.