Dissemin is shutting down on January 1st, 2025

Published in

Cold Spring Harbor Laboratory Press, Genes & Development, 10(23), p. 1183-1194, 2009

DOI: 10.1101/gad.1779509

Links

Tools

Export citation

Search in Google Scholar

Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

CISD2, the causative gene for Wolfram syndrome 2 (WFS2), is a previously uncharacterized novel gene. Significantly, the CISD2 gene is located on human chromosome 4q, where a genetic component for longevity maps. Here we show for the first time that CISD2 is involved in mammalian life-span control. Cisd2 deficiency in mice causes mitochondrial breakdown and dysfunction accompanied by autophagic cell death, and these events precede the two earliest manifestations of nerve and muscle degeneration; together, they lead to a panel of phenotypic features suggestive of premature aging. Our study also reveals that Cisd2 is primarily localized in the mitochondria and that mitochondrial degeneration appears to have a direct phenotypic consequence that triggers the accelerated aging process in Cisd2 knockout mice; furthermore, mitochondrial degeneration exacerbates with age, and the autophagy increases in parallel to the development of the premature aging phenotype. Additionally, our Cisd2 knockout mouse work provides strong evidence supporting an earlier clinical hypothesis that WFS is in part a mitochondria-mediated disorder; specifically, we propose that mutation of CISD2 causes the mitochondria- mediated disorder WFS2 in humans. Thus, this mutant mouse provides an animal model for mechanistic investigation of Cisd2 protein function and help with a pathophysiological understanding of WFS2. (Keywords: Cisd2; Wolfram syndrome 2; autophagy; knockout mice; mitochondria; premature aging)