Published in

Springer Nature [academic journals on nature.com], European Journal of Human Genetics, 2(14), p. 216-221, 2005

DOI: 10.1038/sj.ejhg.5201534

Links

Tools

Export citation

Search in Google Scholar

Segmental duplication density decrease with distance to human-mouse breaks of synteny

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Segmental duplications are large genomic segments of recent origin and nearly identical sequence. Segmental duplications account for up to 5% of the human genome and they are often involved in genomic rearrangements and human disease. We developed a rapid computational method to characterize segmental duplications in the mouse and the human genomes according to four sequence assemblies for each species. Segmental duplication content in the mouse genome assemblies has largely changed over the four releases (from 0.2 to 1.2%, 4.5 and 3.0%), while in the four human assemblies duplication content was 4.8, 3.5, 3.7 and 3.7%, respectively. This suggests that cataloguing and assembling duplications has been challenging in both genomes and any interpretation of comparative analyses of duplication content must keep this in perspective to avoid artifacts. Human and mouse segmental duplications are more frequent than expected in regions where there is a syntenic discontinuity and the duplication content in syntenic regions decreases significantly with distance from breakpoints of synteny. These observations indicate that in mouse and human the frequency of segmental duplications is strongly correlated with distance to human and mouse syntenic breaks or the most dynamic regions in evolution..