Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Biosensors and Bioelectronics, (47), p. 258-264, 2013

DOI: 10.1016/j.bios.2013.03.014

Links

Tools

Export citation

Search in Google Scholar

Sensing lectin-glycan interactions using lectin super-microarrays and glycans labeled with dye-doped silica nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new microarray platform, based on lectin super-microarrays and glycans labeled with dye-doped nanoparticles, has been developed to study glycan-lectin interactions. Glycan ligands were conjugated onto fluorescein-doped silica nanoparticles (FSNPs) using a general photocoupling chemistry to afford FSNP-labeled glycan probes. Lectins were printed on epoxy slides in duplicate sets to generate lectin super-microarrays where multiple assays could be carried out simultaneously in each lectin microarray. Thus, the lectin super-microarray was treated with FSNP-labeled glycans to screen for specific binding pairs. Furthermore, a series of ligand competition assays were carried out on a single lectin super-microarray to generate the dose-response curve for each glycan-lectin pair, from which the apparent affinity constants were obtained. Results showed 4-7 orders of magnitude increase in affinity over the free glycans with the corresponding lectins. Thus, the glycan epitope structures having weaker affinity than the parent glycans could be readily identified and analyzed from the lectin super-microarrays.