Published in

Elsevier, Journal of Hazardous Materials, 1-3(175), p. 680-687, 2010

DOI: 10.1016/j.jhazmat.2009.10.063

Links

Tools

Export citation

Search in Google Scholar

Reductive dechlorination of γ-hexachlorocyclohexane using Fe-Pd bimetallic nanoparticles

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanoscale Fe-Pd bimetallic particles were synthesized and used for degradation of lindane (gamma-hexachlorocyclohexane) in aqueous solution. Batch studies showed that 5mg/L of lindane was completely dechlorinated within 5 min at a catalyst loading of 0.5 g/L and the degradation process followed first-order kinetics. GC-MS analysis in corroboration with GC-ECD results showed the presence of cyclohexane as the final degradation product. The proposed mechanism for the reductive dechlorination of lindane involves Fe corrosion-induced hydrogen atom transfer from the Pd surface. The enhanced degradation efficiency of Fe-Pd nanoparticles is attributed to: (1) high specific surface area of the nanoscale metal particles (60 m(2)/g), manyfold greater that of commercial grade micro- or milli-scale iron particles (approximately 1.6m(2)/g); and, (2) increased catalytic reactivity due to the presence of Pd on the surface. Recycling and column studies showed that these nanoparticles exhibit efficient and sustained catalytic activity.