Published in

Elsevier, Computer Methods in Applied Mechanics and Engineering, 13-16(195), p. 1407-1421

DOI: 10.1016/j.cma.2005.05.042

Links

Tools

Export citation

Search in Google Scholar

Bridging scale methods for nanomechanics and materials

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Inspired by the pioneering work of Professor T.J.R. Hughes on the variational multi-scale method, this document summarizes recent developments in multiple-scale modeling using a newly developed technique called the bridging scale. The bridging scale consists of a two-scale decomposition in which the coarse scale is simulated using continuum methods, while the fine scale is simulated using atomistic approaches. The bridging scale offers unique advantages in that the coarse and fine scales evolve on separate time scales, while the high frequency waves emitted from the fine scale are eliminated using lattice impedance techniques. Recent advances in extending the bridging scale to quantum mechanical/continuum coupling are briefly described. The method capabilities are demonstrated via quasistatic nanotube bending, dynamic crack propagation and dynamic shear banding.