Dissemin is shutting down on January 1st, 2025

Published in

American Society of Hematology, Blood, 15(121), p. e108-e117, 2013

DOI: 10.1182/blood-2012-07-445106

Links

Tools

Export citation

Search in Google Scholar

Aryl hydrocarbon receptor contributes to the MEK/ERK-dependent maintenance of the immature state of human dendritic cells

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dendritic cells (DC) promote tolerance or immunity depending on their maturation state. Previous studies have revealed that DC maturation is enhanced or accelerated upon MEK-ERK signaling pathway inhibition. We have now determined the contribution of MEK-ERK activation to the profile of gene expression of human immature monocyte-derived dendritic cells (MDDC) and peripheral blood myeloid DC. ERK inhibition altered the expression of genes that mediate CCL19-directed migration (CCR7) and LDL binding (CD36, SCARB1, OLR1, CXCL16) by immature DC. Besides, ERK upregulated CCL2 expression while impaired the expression of DC maturation markers (RUNX3, ITGB7, IDO1). MEK-ERK-regulated genes exhibited an over-representation of cognate sequences for the Aryl Hydrocarbon Receptor (AhR) transcription factor, whose transcriptional and DNA-binding activities increased in MDDC upon exposure to the MEK1/2 inhibitor U0126. Therefore, MEK-ERK signaling pathway regulates antigen capture, lymph node homing and the acquisition of maturation-associated genes, and its contribution to the maintenance of the immature state of MDDC and myeloid DC is partly dependent on the activity of AhR. Since pharmacological modulation of the MEK-ERK signaling pathway has been proposed as a potential therapeutic strategy for cancer, our findings indicate that ERK inhibitors might influence anti-tumor responses through regulation of critical DC effector functions.