Dissemin is shutting down on January 1st, 2025

Published in

Springer Verlag, European Radiology, 10(18), p. 2303-2310

DOI: 10.1007/s00330-008-1012-z

Links

Tools

Export citation

Search in Google Scholar

Assessment of calf muscle contraction by diffusion tensor imaging

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The goal of this study was to assess the changes of water diffusion during contraction and elongation of calf muscles using diffusion tensor (DT) MRI in normal volunteers. Twenty volunteers (mean age, 29+/-4 years) underwent DT MRI examination of the right calf. Echo planar imaging sequence was performed at rest, during dorsal flexion and during plantar flexion. The three eigenvalues (lambda1, lambda2, and lambda3), apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of the diffusion tensor were calculated for medial gastrocnemius (mGM) and tibialis anterior (TA). A fiber tractography was performed on both muscles. Non-parametric Wilcoxon and Mann Whitney tests were used for statistical evaluation. At rest, lambda1, lambda2 and ADC of mGM were higher than their counterparts of TA (P<0.01). During dorsal flexion, the three eigenvalues and ADC of TA significantly increased (P<0.05) as their counterparts of mGM slightly decreased (P=NS). Opposite variations were detected during plantar flexion of the foot. Visual analysis evidenced a relationship between 3D representations of MRI fibers and physiological state of muscles. Contraction of calf muscles produces changes in DT parameters, which are related to the physiological state of the muscle.