Published in

Cell Press, Current Biology, 20(25), p. 2709-2716, 2015

DOI: 10.1016/j.cub.2015.09.013

Links

Tools

Export citation

Search in Google Scholar

Elevated CO 2 -Induced Responses in Stomata Require ABA and ABA Signaling

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

An integral part of global environment change is an increase in the atmospheric concentration of CO2 ([CO2]) [1]. Increased [CO2] reduces leaf stomatal apertures and density of stomata that plays out as reductions in evapotranspiration [2-4]. Surprisingly, given the importance of transpiration to the control of terrestrial water fluxes [5] and plant nutrient acquisition [6], we know comparatively little about the molecular components involved in the intracellular signaling pathways by which [CO2] controls stomatal development and function [7]. Here, we report that elevated [CO2]-induced closure and reductions in stomatal density require the generation of reactive oxygen species (ROS), thereby adding a new common element to these signaling pathways. We also show that the PYR/RCAR family of ABA receptors [8, 9] and ABA itself are required in both responses. Using genetic approaches, we show that ABA in guard cells or their precursors is sufficient to mediate the [CO2]-induced stomatal density response. Taken together, our results suggest that stomatal responses to increased [CO2] operate through the intermediacy of ABA. In the case of [CO2]-induced reductions in stomatal aperture, this occurs by accessing the guard cell ABA signaling pathway. In both [CO2]-mediated responses, our data are consistent with a mechanism in which ABA increases the sensitivity of the system to [CO2] but could also be explained by requirement for a CO2-induced increase in ABA biosynthesis specifically in the guard cell lineage. Furthermore, the dependency of stomatal [CO2] signaling on ABA suggests that the ABA pathway is, in evolutionary terms, likely to be ancestral.