Published in

Wiley, Journal of Neurochemistry, 1(78), p. 109-120, 2001

DOI: 10.1046/j.1471-4159.2001.00370.x

Links

Tools

Export citation

Search in Google Scholar

C‐terminal fragment of amyloid precursor protein induces astrocytosis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

One of the pathophysiological features of Alzheimer's disease is astrocytosis around senile plaques. Reactive astrocytes may produce proinflammatory mediators, nitric oxide, and subsequent reactive oxygen intermediates such as peroxynitrites. In the present study, we investigated the possible role of the C-terminal fragment of amyloid precursor protein (CT-APP), which is another constituent of amyloid senile plaque and an abnormal product of APP metabolism, as an inducer of astrocytosis. We report that 100 nm recombinant C-terminal 105 amino acid fragment (CT105) of APP induced astrocytosis morphologically and immunologically. CT105 exposure resulted in activation of mitogen-activated protein kinase (MAPK) pathways as well as transcription factor NF-κB. Pretreatment with PD098059 and/or SB203580 decreased nitric oxide (NO) production and nuclear factor-kappa B (NF-κB) activation. But inhibitors of NF-κB activation did not affect MAPKs activation whereas they abolished NO production and attenuated astrocytosis. Furthermore, conditioned media derived from CT105-treated astrocytes enhanced neurotoxicity and pretreatment with NO and peroxynitrite scavengers attenuated its toxicity. These suggest that CT-APP may participate in Alzheimer's pathogenesis through MAPKs- and NF-κB-dependent astrocytosis and iNOS induction.