Published in

Elsevier, Applied Surface Science, (311), p. 177-181, 2014

DOI: 10.1016/j.apsusc.2014.05.038

Links

Tools

Export citation

Search in Google Scholar

Copper (II) oxide nanowires for p-type conductometric NH3 sensing

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Copper (II) oxide (CuO) is a metal oxide suitable for developing solid state gas sensors. Nevertheless, a detailed insight into the chemical-to-electrical transduction mechanisms between gas molecules and this metal oxide is still limited. Here, individual CuO nanowires were evaluated as ammonia (NH3) and hydrogen sulphide (H2S) sensors, validating the p-type character of this semiconductor. The working principle behind their performance was qualitatively modeled and it was concluded that adsorbed oxygen at the surface plays a key role necessary to explain the experimental data. Compared to their counterparts of SnO2 nanowires, an appreciable sensitivity enhancement to NH3 for concentrations below 100 ppm was demonstrated.