Published in

Elsevier, Science of the Total Environment, (532), p. 292-300, 2015

DOI: 10.1016/j.scitotenv.2015.06.026

Links

Tools

Export citation

Search in Google Scholar

Comparative fate of an organochlorine, chlordecone, and a related compound, chlordecone-5b-hydro, in soils and plants

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We address the problem of the comparative environmental fate of a pesticide, chlordecone (CLD), and a related compound, chlordecone-5b-hydro (CLD-5b-hydro). We used a large database including data from two types of contaminated volcanic soils, andosol and nitisol, and thirteen crops grown in the French West Indies in historically polluted soils. We performed in-depth statistical analysis of the effect of different parameters (soil type, crop, organ, etc.) on the ratio of CLD-5b-hydro to CLD in both soils and plants. The environmental fate of the two compounds differed depending on the type of soil. Proportionally, more CLD-5b-hydro than CLD was measured in nitisols than in andosols. Compared to CLD, we also found a preferential transfer of CLD-5b-hydro from the soil to the plant. Finally, mobilization of the two compounds differed according to the species of crop but also within the plant, with increasing ratios from the roots to the top of the plant. The properties of the compound played a key role in the underlying processes. Because CLD-5b-hydro is more soluble in water and has a lower Kow than CLD, CLD-5b-hydro (1) was more easily absorbed from soils by plants, (2) was less adsorbed onto plant tissues and (3) was transported in greater quantities through the transpiration stream. Due to the amounts of CLD-5b-hydro we measured in some plant parts such as cucurbit fruits, an assessment of the toxicity of this CLD monodechlorinated product is recommended. (Résumé d'auteur)