Published in

Wiley, Journal of the American Ceramic Society, 5(96), p. 1660-1665, 2013

DOI: 10.1111/jace.12202

Links

Tools

Export citation

Search in Google Scholar

Origin of Different Growth Modes for Epitaxial Manganite Films

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The microstructures of the Bi 0.4 Ca 0.6 MnO 3 (BCMO) and La 0.67 Ca 0.33 MnO 3 (LCMO) epitaxial films are investigated by transmission electron microscopy in detail. BCMO epitaxial films (~ 10 and ~ 40 nm) exhibit an island growth mode whereas the LCMO films (~ 6 and ~ 30 nm) follow a layer by layer growth mode. Combined with the critical thickness mod-els for the expected onset of the misfit dislocations in epitaxial films, an atomic collapse model is introduced to explain their mechanism of formation in manganite films. At the beginning of deposition, the strain caused by the lattice mismatch between the epitaxial film and substrate can be accommodated by elastic deformation. With the increase of film thickness, the strain becomes larger and larger. When the film thickness reaches the critical thickness, the strain can only be relaxed by the formation of misfit dislocations. Meanwhile, the atomic configuration of the epitaxial film will reorganize and some atoms begin to collapse, thus an island morphology will be formed. Once the collapse morphology is formed, maintenance of this wave-like morphology depends on atomic diffusion length of the deposited atoms. If the diffusion length of the deposited atoms is long, the island morphology will not be maintained. If the diffusion length of the deposited atoms is short, the island morphology will keep until the epitaxial film is thick enough. The results could shed light on the growth modes for other perovskite epitaxial films.